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Abstract 

 
There is a growing demand for web applications 

to provide fair service to the highly concurrent 
requests. In this paper, we present an approach to 
addressing this requirement. Based on the Staged 
Event-Driven Architecture (SEDA), our design takes 
advantage of global control strategy to balance the 
loadings across the staged network, makes use of 
system identification to automatically model 
performance, and applies control theory to 
automatically control performance fairness. By 
implementing our design on a web server and 
evaluating the performance with unpredictable 
dynamic loadings, we demonstrate that our design is 
able to yield superior performance on fairness, 
showing high accuracy and good robustness.  
 
1. Introduction 
 

Web servers are generally needed to provide fair 
service for high-concurrent requests. In terms of the 
overheads associated with the resources contention 
and threading, most of the conventional thread-based 
concurrent models are not well suited to meet this 
goal. Alternative to the thread-based concurrent 
model, Staged Event-Driven Architecture (SEDA) 
[14,15] is a new software architecture to benefit the 
system in massive current loads and service fairness. 
However, SEDA cannot effectively guarantee the 
fairness of service quantitatively. In general, the 
typical justification for fairness is the current jobs 
receive fair service in terms of equal service time and 
the equal opportunity to be serviced. The percentile 
response time is one of the most commonly used 
performance metrics to evaluate the quality of 
fairness. 

 
Several papers have reported the studies that make 

important advances towards the goal of providing 

explicit control on fairness. For example, Welsh [14] 
proposed an admission controller to manage the 90th 
percentile response time for each stage in SEDA. In 
[1], Adbelzar et al used feedback control for QoS 
(quality of service) management. In [16], Urgaonkar 
et al introduced employing scalable admission 
control technique for internet applications.   

 
However, the solutions proposed in the previous 

work generally have a few shortcomings. Firstly, 
most of them made use of the arrival rate control on 
queuing to guarantee the fairness of service. As 
discussed in [1], the fairness metrics (like response 
time) are related to the queue length. Queue lengths 
may be adjusted by varying the arrival or dispatch 
rates. However, using the arrival rate as a mechanism 
to ensure fairness necessitates that any adjustments 
must be done at the source, which  would create 
unnecessary rejection of traffic. Secondly, most of 
the current fairness control mechanisms are only 
developed for a single thread-based concurrency 
model, which is not well-suited to support high 
concurrent requests. Finally, a large number of the 
control systems adopt the fixed policy control 
approaches that need experience-based manual 
configuration, which usually cannot guarantee the 
quality of performance [5].  

 
In this paper, by taking combining SEDA and 

Control Theory, we believe that we have a new 
approach to ensuring fairness under high 
concurrency. The SEDA architecture is deployed in 
our design as the groundwork to support heavy 
concurrent requests. Based on SEDA, our design will 
make use of the global control strategy to balance 
loading in the staged network, exploit system 
identification techniques to model the controlled 
system at real-time, and utilize adaptive control 
approach to implement fairness control on-the-fly. 
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The structure of the paper is as follows. Section 2 
discusses the related work and highlights how our 
work differs from the existing literature. Section 3 
presents the fairness control system design, including 
global loading control framework, self-tune stage 
with automatic modeling and fairness control 
approaches. Section 4 shows the experimental results 
of benchmarking our design, and Section 5 presents 
our thoughts on future work and conclusions. 
 
2. Related Work 

 
In this section, we discuss some related work on 

web server performance control, especially the fair 
service control as classified as below. 
 
2.1 Admission Control on Queuing  
 

The degree of fairness is generally determined by 
the queue lengths [1]. By controlling the queue length 
or the arrival rate, the response time of each accepted 
request can be guaranteed. Admission control 
approaches that are currently exploited in fairness 
control on software systems usually make use of 
round robin scheduler, or use a threshold to decide 
the acceptance or rejection of a request to avoid 
overloading. Chen et al. [4] proposed a dynamic 
weighted fair sharing scheduler to control session-
based overload in web servers. The weights are 
adjusted to maximize the throughput objective 
function, partially based on session transition 
probabilities from one state to another, avoiding the 
requests overwhelming the state capacity. Similarly, 
Carlstrom et al. [3] used heuristic control approach 
on generalized processor sharing for scheduling 
requests. Based on empirical parameter configuration, 
Urgaonkar et al. [16] made use of batch processing 
and scalable threshold policing to handle overloads in 
web application servers at runtime, and demonstrated 
that this approach can perform well under estimated 
loading environments. Based on SEDA, Welsh et al. 
[14] presented a multi-stage approach to overload 
control based on adaptive per stage admission control. 
In this approach, the controller observes the staged 
service time and tunes request rate on each stage to 
attempt to meet the stage’s percentile response time 
target.  
 
2.2 Classical Feedback Control 

 
Using classical feedback control theory is another 

approach to controlling the performance for web 

servers. Adbelzar et al. [1] adjusted control 
parameters based on various QoS management 
measures, including resource utilization, resource 
sharing, system loading etc. In [5], Diao et al. 
presented an auto-tune agent for CPU and memory 
utilization control by combination of automatic 
system modeling mechanism and LQR feedback 
control. Similarly, Zhou in [17] made use of the PID 
(proportional-integral-derivative) on queuing control, 
but the PID parameters configuration is based on 
empirical guess. Compared with other fixed policy 
control approaches, control theoretic approaches 
demonstrate advantages in their flexibility, stability, 
accuracy and rate of convergence. This approach is 
easy to use in practice, especially for software 
systems that need fast reaction with good robustness. 
However, a classic feedback control system needs the 
mathematical model of the target system. If the 
configuration of the control parameters depends on 
the administrator’s experiences, the control quality is 
unreliable and non-guaranteed.  

 
3. Fairness Control on Web Servers 
 

As demonstrated in [14], staged event-driven 
architecture (SEDA) is a sound way to support highly 
concurrent systems. However, SEDA does not 
guarantee the fairness for such systems, e.g. web 
servers, where the client load is highly concurrent 
and dynamic. In this paper, we present an innovative 
system that explicitly manages the fairness for busy 
web applications with quality and quantity 
guaranteed.  

 
The purpose of the fair service is to let requests 

equally have the expected quality of service. The 
distribution of the response time is an important 
metric to evaluate the degree of fairness. In general, 
the percentile response time is determined by the 
queue lengths, which are related to the arrival rate of 
the requests and the dispatch rate of the responses. A 
large number of studies, like the work introduced 
above, usually focused on using the arrival rate to 
control the response time. In fact, as an alternative 
way, resource management with respect to the 
dispatch rate regulation is also feasible for fairness 
control. In this section, we will firstly present a 
control approach for the throughput of the whole 
system, and then show how to map the percentile 
response time to the target throughput. Finally a 
control strategy for explicit fairness control by 
dispatch rate regulation is proposed. 
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3.1 Staged Event-Driven Architecture (SEDA) 
 

SEDA partitions a complex business logic into a 
set of simple basic tasks in order. Each task is 
processed by a sequence of stages separated by event 
queues. Since SEDA uses non-blocking input/output 
(I/O) for its event-driven designs it is effectively able 
to provide quality-guaranteed fairness control for 
high-concurrent loads with less resources and 
contention [14]. The explicit event queues between 
SEDA stages act as a mechanism for controlling the 
flow of requests in the whole system. Under the 
SEDA architecture, each stage is isolated from others 
and is responsible only for processing a subset of 
requests to avoid holding resources by single request 
and associated thread for too long. In terms of the 
decoupled design and the disadvantages of the 
original empirical control system, in [7] we presented 
an innovative automatic control framework for such 
multiple event queue system to self optimize the 
system resources and performances on-line. 
 
3.2 Automatic Control Framework on SEDA 

 
The service rate (throughput) of the SEDA-based 

system is one factor that determines the latency of 
server requests. Queue capacity is another factor. In 
SEDA, loading balancing in the staged pipeline is 
important for the whole system performance. To 
meet this goal, an automatic control framework on 
SEDA is developed as a combination of global 
loading balance control system and self-tune stages. 
The purpose of the global control framework is to 
manage the overall throughput of the whole staged 
network at the top-level, which includes coordinating 
the performance of all stages in the network and 
balancing the loadings in the staged pipeline, as 
illustrated in Figure 1 
 

 
 

Figure 1: An Overview of the Global Control System 
 
In this figure the broad arrows lying between the 

stages represent the processing path of the event 
requests, and the thin arrow curves represent the 
reference signal setup by global control mechanism 
and the feedback loop of the control system. 

^

Ar ,
^

Br ,
^

Cr ,
^

Dr are the performance targets of the stage, 
configured by the global control system [7]. 

 
Under the control framework, each self-controlled 

stage is built on the thread pool model, and will 
adjust its performance locally in order to meet the 
overall target performance. In [7] we presented a 
configuration law for the global workload balancing 
under this control framework and demonstrated that 
using proportional control based pre-compensator 
control system is able to achieve the control target 
with a fast convergent speed.  
 
3.3 Automatic Control System on Stage 
 

Each stage consists of a thread pool modular and 
an auto-modeling based feedback control system, as 
illustrated in Figure 2. In each stage, the thread pool 
model is the controlled target, the same as the 
original SEDA design.  The purpose of the auto 
modeling mechanism is to automatically depict the 
flow in the stage and to optimize the controlled 
parameter configurations at runtime. Working 
together with auto-modeling, the feedback control 
system auto tunes the manipulated parameters to the 
best values by using automatic control theories, 
thereby guaranteeing the quality of performance. 
 

 
 

Figure 2: Self-Tune Stage 
 

We reuse the proportional-control based pre-
compensator control strategy [7] to implement the 
feedback control mechanism. This controller 
approach is validated by the results from a simulation 
study using Matlab [8] and a real-life implementation 
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of a SEDA-based web server. The results are shown 
in Figure 3. 

 
Figure 3: Performance of the Control System in Simulation and 

Practice 
 

As Figure 3 shows, the simulation output closely 
matches the reference, which means our design is 
able to effectively control the system performance at 
runtime, with an adequate convergence  rate and a 
very small steady-state error.  

 
Figure 4 shown below is the result of the 

comparison between the heuristic control used in the 
original SEDA and the Proportional control strategy 
used in the current design.  

 
Figure 4: Comparison of the Feedback Control and Heuristic 

Control 
 

The comparison results demonstrate that the 
performance of our control can provide a faster 
reaction speed, higher stability and better accuracy. 
The oscillations that appear in the experimental 
process are most probably due to the Java Virtual 
Machine (JVM) garbage collection [13].  

 
In general, classical feedback control is not widely 

deployed in software systems because of the 
difficulties of manual system modeling. Combining 
the auto-modeling mechanism with the control 
system reduces the manual work in configuration 
management, and guarantees the values chosen for 
the controlled parameters are optimal and reliable. 
 
 

3.4 Fairness Control  
 
Fairness in web applications is a performance 

metric presented as a percentage of the requests that 
can get the equal quality of service. In order to 
guarantee the majority of requests can get the desired 
response time, the 90th percentile response time is 
chosen as the controlled target in the current research.  

 
Based on Little’s law [9], average response time 

can be mapped to the average number of clients via 
throughput as Equation (1) shows.  

where N , T and R represent the average number of 
clients, the mean response time and the throughput 
respectively. Little’s law implies that the average 
response time can be controlled by throughput. If the 
desired percentile response time can be mapped to 
the mean response time, the control approaches used 
in the throughput can be reused in the current design 
for fairness management. 

 
Although the percentile response time does not 

have direct relationship to the mean response time in 
terms of the uncertainties of the distribution, 
however, regardless of the difference of the 
distribution, in arbitrary sample interval, the value of 
the percentile response time can be regarded as 
proportional related to the mean response time. In 
terms of this relationship, Equation (2) and Equation 
(3) are developed to estimate the desired average 
response time used in each sample period,  

~
( 1) ( 1) ( 1)estimate desiredR k k R kα+ = + +  

 
(2) 

 
~

( )( 1) ( ) (1 )
( )percentage

R kk W k W
R k

α α+ = + −  
 

(3) 
 

where
~

estimateR and desiredR respectively represent the 
target of the average response time obtained from 
estimation and the target of the percentile response 
time. α is a dynamic scale used to convert the target 
of the percentile response time to the estimated mean 
response time. Equation (2) converts the reference of 
the percentile response time to the desired average 
response time via scale α . Equation (3) is developed 
to update the α in each sample interval. At the 
sample interval of 1k + , α is estimated by the most 

.N R T=  (1) 
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recent mean response time (
~

( )R k ) and the percentile 
response time ( ( )percentageR k ) with a weightW . Our 
experiment results show that, despite uncertainties of 
the distribution, using Equation (2) and Equation (3) 
is sufficient to smoothly map the percentile 
performance metrics to the average performance 
metrics with considerable accuracy at the runtime. 

 
When system is running with a constant number of 

requests at any time, the clients number at time 
1k + can be estimated by the last mean response time 

(
~

( )R k ) and throughput ( ( )T k ), as Equation (4) 
shows.  

^ ~
( 1) ( ). ( )N k R k T k+ =  

 
(4) 

 

where 
^

( 1)N k + is the estimated average number of 
clients at the interval of 1k +  in the system. 
 

Despite some difference between the actual 
number of clients in the next and current sample 
interval, the difference can be regarded as small 
enough to be neglected in a system dealing with 
stable loadings. Using these parameters, the desired 
system throughput in 1k + can be obtained by 
Equation (5) 

^
( 1)( 1)

( 1). ( 1)throughput
desired

N kRef k
R k kα

++ =
+ +

 
 

(5) 
 

Equation (5) maps the desired percentile response 
time to throughput. It means that when the average 
number of requests staying in the system is constant, 
and if the system can perform with the desired 
service rate, the system will ensure the fairness of 
service to meet the performance target. These 
operations are implemented with the global control 
mechanism. In each sample interval, the global 
control framework automatically adjusts the desired 
throughput obtained from Equation (5) on each stage. 
Each auto-tune stage then will use the feedback 
control system to convert its departure rate to this 
target. 

 
Because it is a feedback control system, its 

response will lag changes in the workload. To 
address this issue, when a large number of requests 
are added onto the server in a small interval, the 
highest request rate in the recent history record will 

be used as the desired throughput of the stage’s own 
performance target. This allows an increase in the 
convergence rate and guarantees there are sufficient 
resources allocated in the stage to support the 
increasing loading, so as to maintain a satisfactory 
performance. When the loading in the system 
becomes stable again, the global loading control 
mechanism will reuse Equation (2) and (3) to 
calculate the estimated throughput. In one sense, 
using a stage request rate as the desired throughput 
can be regarded as a special case where the service 
rate equals the request rate and the estimated mean 
response time obtained from the desired percentile 
response time is identical to the latest average 
response time.  

 
4. Implementations and Experimental 
Results 

 
In this section, we demonstrate the experimental 

results of putting the above theoretical designs into a 
SEDA based web server [15] to validate and evaluate 
the performance in practice. The testbed consists of 
one server machine (2.8 GHz Pentium 4 systems with 
1.5 GB of RAM) and a client machine (2.0 GHz 
Pentium 4 systems with 512MB of RAM). The 
SEDA web server is developed with SUN JDK 1.5 
running on Linux kernel v2.6. 

 
To imitate a dynamic loading environment that is 

as realistic as possible, a “partly-open loop” 
benchmark [2] is developed to evaluate our designs. 
Most of the benchmarks currently in use are grouped 
into two catalogues. One is the “open loop” 
benchmarks such as httperf [6]. The benchmarks in 
this group send requests at a fixed rate periodically 
(the time of the period is also named as thinking 
time). The performance of this benchmark strongly 
depends on the configuration of the thinking time. 
However, the optimal configuration for this 
parameter is not only a matter of the benchmark 
itself, but is also affected by the server. In general, it 
is not easy to obtain a good value for the benchmark 
settings. Another type of the benchmark is “closed 
loop” model. “Clients” in this kind of benchmark will 
only send new request until the response of the last 
request has come back, like TPC-C [12] etc. 
Benchmarks of this type can provide constant 
workload on the server side. However, a pitfall of this 
kind of benchmark is that it cannot continue putting 
pressure on the server. Although it also can be used 
to emulate a dynamic loading environment, however, 
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a couple of such benchmarks are needed to run 
alternatively during the experiment, which may 
consume a great deal of resources. In terms of the 
failures of the “open loop benchmark” and the 
“closed loop benchmark”, “partly open loop” 
benchmark is proposed in [2], which is aimed to 
provide a more realistic dynamic loading 
environment by making use of a small number of the 
clients. The “partly open loop” system here is 
developed based on the SPEC 99 [11]. Whenever the 
response of the most recent request is not received 
before the expected time, the client will send a new 
request to the server. The “Partly open loop” 
benchmark simulates a more dynamic environment 
and keeps putting heavier load on the server with less 
resource consumption. The “Partly open loop” model 
has the advantages that it can not only guarantee a 
constant loading on the server, like “closed loop” 
model; but also behaves like “open loop” benchmark 
that keeps sending new requests, which enables a 
server to experience a more realistic loading test than 
conventional benchmarks.  

 
To demonstrate our designs, we make use of the 

design to implement fairness control on web servers, 
in which the 90th percentile response time is chosen 
as our performance metrics and control target. This 
test includes two experiments. In one we have control 
over the 90th percentile response time in order to 
meet the changed dynamic target at runtime; in the 
second the 90th percentile response time is kept 
stable at the desired target when the workload is 
arbitrarily changed. 

 
4.1 Trace the Dynamic 90th Percentile 

Response Time Target  
 
The purpose of this experiment is to test the 

feasibility of the control mechanism when it is 
needed to control the 90th percentile response time in 
response to the change of the desired target at 
runtime. The “partly-open loop” workload generator 
simulates 250 clients to request the same service 
from the server. If the response of the last request 
does not come back within the expected time 
(1500ms here), a new request is sent to the server. 
The experimental result is shown in Figure 5.  
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Figure 5  Adjust the 90th Response Time on-the-fly 

 
As Figure 5 shows, whenever the performance 

target is changed, server adjusts the resources to 
follow the reference, and maintain most of the 
response time remaining under the target. It can be 
seen from the results that our approach provides a 
fast convergent process with high accuracy. Note that 
the control performance may be unsteady at times in 
terms of the instability of the network and the jitter of 
the request arrival rates, as well as the memory 
management used in JVM. In addition, when the 
control target is close to the “expected response time” 
of the benchmark, performance will be unstable for 
large variation in the request rate.  

 
4.2 Maintain stable 90th percentile response 

Time 
 

This experiment tests the performance of our 
design keeping constant percentile response time 
during unpredictable dynamic loading environment. 
In the experiment, four groups of clients are 
randomly added onto the server at different time, 
whose sizes are 100, 150, 100, and 50 respectively, 
and each client is independent on others (as Figure 7 
shown). The 90th percentile response time is expected 
to be less than 1000ms (with 10% variance 
permitted). By using the above algorithm and control 
approaches, the performance of the system is 
illustrated in Figure 6. The experimental results 
demonstrate that even under unpredictable dynamic 
loading environment our mechanism is able to 
maintain fair service to a majority of the incoming 
requests. 
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Figure 6 Maintaining Constant 90th Percentile Response Time 
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Figure 7 Dynamic Workload Placed on the Web Server 

 
As can be seen from the results, instead of using 

the arrival rate control at the source, departure rate 
control is an alternative approach to implementing 
the fair service effectively for the dynamic loadings. 
Some unexpected spikes in the process are recorded 
for two reasons. The first is the variation of the 
request rate. In general, there is a delay in the 
system’s reaction to the change in the working 
environment, and thus the system is late at adjusting 
the thread pool size to the correct value. Once the 
active number of threads is insufficient to support the 
requests, response time will sharply increase. Hence 
when a large number of new clients are added to the 
server, the system will take some time to settle down 
these new requests, similar to the performance during 
the interval between the 14th and 32nd seconds. 
Reaction delay indeed is a failure of all feedback 
control systems. Another reason is the periodic 
garbage collection in JVM, like the spike that appears 
at the time spot of 50th. Whenever JVM is running 
the garbage collection, the accepted requests are 
suspended, thereby accumulating a large number of 
requests queuing for service. The service time thus 
sharply increases.  
 

This experiment also reveals the relationship of the 
response time, arrival rate and the dispatch rate. 

Figure 8 illustrates the difference of the arrival rate 
and dispatch rate at real-time. Referring to the 
response time shown in Figure 6, the experimental 
results demonstrate a fact that the response time is 
not directly determined by the number of requests 
accepted by the system or the service rate, but is 
resulted from the difference of the arrival rate and the 
dispatch rate. In one sense, this difference can be 
regarded as the total queue-fill-level in the system 
from the end to the front. This relationship implies 
that the response time should be controlled by 
minimizing the difference between the service rate 
and the arrival rate, rather than only focus on the 
system capacity or arrival rate. 

 
Figure 8 the Difference of the Arrival Rate and Dispatch Rate 

(positive value means Arrival Rate is greater than Dispatch Rate) 
 

Figure 9 shows the distribution of the response 
time in this experiment. It can bee see that 90% 
percentile of the response time can be controlled at 
the points less than 1160 ms, almost meeting our 
control target. 

 
Figure 9   Distribution of the Response Time 

 
The above experimental results definitely 

demonstrate that our design is able to provide explicit 
quantitative control on fairness for high concurrency. 
Even when the system runs under dynamic loading 
environment with uncertainties, our design is still 
able to effectively control the performance to meet 
the target and shows good robustness. 
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4.3 Comparison with the Original SEDA  
 

In this evaluation, our design is implemented into a 
SEDA-based web server to compare with the original 
SEDA web server [15] that uses the admission 
controllers with round robins [14]. Both servers are 
required to provide the response time at less than 
100ms to 90% of the total requests. The configuration 
of the parameters in the original SEDA is optimized 
by our long-time tests and experiences. On the client 
side, we make use of a set of the “open loop” request 
generators. Each generator emulates 100 independent 
clients, and every client will randomly dispatch a new 
request every 200~600ms. In order to build a 
dynamic loading environment, three groups of clients 
(each group has 100 clients) are added onto the server 
every 120 seconds during the runtime.  

 
First of all, we compare the distribution of the 

response time of two servers. The results are shown 
as Figure 10 and Table 1. 
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Figure 10 the Distribution of the Response Time 

 
Table 1 the Comparison of the Fairness Performance  

 

 
Total 

Requests 
(packets) 

Accepted 
Requests 
(packets) 

Rejected 
Requests 
(packets) 

Requests 
< 100ms 
(packets) 

Original   
SEDA 234676 149491 85185 143362 

 Auto-
Fairness 
Control 

240133 240133 0 176606 

 
The above results show the comparisons in the 

following aspects. Firstly, it shows the comparison on 
the percentage of the requests that can get the 
demanded response time. It can be seen from table 1 
that, nearly 95.9% of the processed requests in the 
original SEDA can achieve the quality of service, 
whereas, just 73.54% meet the target in our design. 
Secondly, in the original SEDA, the percentage of the 
rejected requests reaches 36.3%, but in our 

mechanism the rejected rate is 0. These data indicates 
that, among all the client requests sent to the servers, 
the percentages of the requests that can get the 
expected response time are respectively 61.8% and 
73.54% in the original SEDA and in our mechanism. 
Moreover, as figure 10 shows, the requests serviced 
by our design have an overall faster service time than 
the original SEDA. As a result, we argue that our 
approach can provide a fairer service than the 
original SEDA. 

 
Secondly, we compare the throughput of two 

servers. The experimental results are shown in 
following figures.  
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         Figure 11 the Throughput of the Automatic Fairness Control 
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Figure 12 the Throughput of the Original SEDA under Admission 

Control 
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Figure 13 the Loadings at Runtime 

 
As the experimental results show, with the number 

of the requests increase, our automatic fairness 
control mechanism is able to optimize resources to 
maintain a stable throughput. In contrast, under high 
concurrency, the original SEDA will make use of the 
admission control mechanism to reject the incoming 
requests, thereby degrading the throughput. This 
comparison demonstrates that our design performs 
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more robustly than the original SEDA, and is able to 
guarantee the quality of the performance under 
unpredictable dynamic loadings. 

 
Thirdly, as a staged network, stages are expected 

to perform in accord. Figure 16 and Figure 17 exhibit 
the comparison of the performances of the stages in 
the auto-tune control framework and in the original 
SEDA.  
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Figure 14 the Performance of the Stages under the Automatic 

Fairness Control Strategy 
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Figure 15 the Performance of the Stages in the Original SEDA 
 
With the use of the global control framework, our 

auto-control system is able to balance the workload 
across the staged network. In contrast, under the 
same loading, the stages in the original SEDA 
perform with unequal service rates, resulting in a 
significant degradation of the overall performance. 
Therefore, our design avoids the problem that the 
resource is consumed by rejected requests. 

 
Finally, our design employs the automatic control 

theories which implement the fairness management. 
Using this approach, system administrators are only 
needed to configure the performance target on the 
system. However, in terms of the fixed policy control 
strategy, the original SEDA is required to optimize 
the number of tokens and the thread pool size for 

each stage. This manual configuration is very time-
consuming and non-quality guaranteed. In particular, 
when the system is running under the dynamic 
loading environment with uncertainties, the 
automatic fairness control mechanism is able to 
maintain a stable performance, meeting the 
performance target. But the performance of the 
original SEDA usually is degraded a lot in terms of 
the fixed configurations. 

    
5. Conclusions and Future Work 
 

This paper presented an innovative approach for 
explicit fairness control on web applications. Based 
on SEDA, the design developed here consists of a 
global control framework for loading balance in 
multi-queue the event-driven systems and the 
automatic modeling based high-level adaptive control 
stages. Both theoretical analysis and experimental 
results demonstrated that, by using resources 
optimization, our approach is effective on fairness 
control for web servers with superior performance 
even under unpredictable dynamic loading 
environment. Compared with heuristic control, this 
control strategy is able to provide fast convergence, 
high accuracy and reliable services. Instead of 
applying complicated control theory and algorithms, 
our work also showed that Proportional control based 
pre-compensation model is good enough for 
multiple-stage software systems performance control. 
This makes it feasible to build our approach into 
SEDA middleware and apply it for a large range of 
applications 
 

Compared with the fairness of service provided by 
the original SEDA, our design provides a fairer and 
more robust service for high concurrency with no 
rejected requests. As a result, this work significantly 
improves the original SEDA in terms of service 
fairness and robustness. 
 

From here, two areas of future work are particular 
interesting. The first is to extend our design to 
support differentiated services. Our current design 
only focuses on providing quality-guaranteed service 
fairness to all requests on the same service level, but 
is not developed for differential classes. The other is 
to apply our design and the approach in the large 
scale distributed systems. 
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