

Explicitly Controlling the Fair Service for Busy Web Servers

 Zhanwen Li, David Levy Shiping Chen, John Zic
School of Electrical and Information Engineering Networking Technologies Laboratory
 University of Sydney CSIRO Australia
 {li_zw,dlevy}@ee.usdy.edu.au {shiping.chen, john.zic}@csiro.au

Abstract

There is a growing demand for web applications

to provide fair service to the highly concurrent
requests. In this paper, we present an approach to
addressing this requirement. Based on the Staged
Event-Driven Architecture (SEDA), our design takes
advantage of global control strategy to balance the
loadings across the staged network, makes use of
system identification to automatically model
performance, and applies control theory to
automatically control performance fairness. By
implementing our design on a web server and
evaluating the performance with unpredictable
dynamic loadings, we demonstrate that our design is
able to yield superior performance on fairness,
showing high accuracy and good robustness.

1. Introduction

Web servers are generally needed to provide fair
service for high-concurrent requests. In terms of the
overheads associated with the resources contention
and threading, most of the conventional thread-based
concurrent models are not well suited to meet this
goal. Alternative to the thread-based concurrent
model, Staged Event-Driven Architecture (SEDA)
[14,15] is a new software architecture to benefit the
system in massive current loads and service fairness.
However, SEDA cannot effectively guarantee the
fairness of service quantitatively. In general, the
typical justification for fairness is the current jobs
receive fair service in terms of equal service time and
the equal opportunity to be serviced. The percentile
response time is one of the most commonly used
performance metrics to evaluate the quality of
fairness.

Several papers have reported the studies that make

important advances towards the goal of providing

explicit control on fairness. For example, Welsh [14]
proposed an admission controller to manage the 90th
percentile response time for each stage in SEDA. In
[1], Adbelzar et al used feedback control for QoS
(quality of service) management. In [16], Urgaonkar
et al introduced employing scalable admission
control technique for internet applications.

However, the solutions proposed in the previous

work generally have a few shortcomings. Firstly,
most of them made use of the arrival rate control on
queuing to guarantee the fairness of service. As
discussed in [1], the fairness metrics (like response
time) are related to the queue length. Queue lengths
may be adjusted by varying the arrival or dispatch
rates. However, using the arrival rate as a mechanism
to ensure fairness necessitates that any adjustments
must be done at the source, which would create
unnecessary rejection of traffic. Secondly, most of
the current fairness control mechanisms are only
developed for a single thread-based concurrency
model, which is not well-suited to support high
concurrent requests. Finally, a large number of the
control systems adopt the fixed policy control
approaches that need experience-based manual
configuration, which usually cannot guarantee the
quality of performance [5].

In this paper, by taking combining SEDA and

Control Theory, we believe that we have a new
approach to ensuring fairness under high
concurrency. The SEDA architecture is deployed in
our design as the groundwork to support heavy
concurrent requests. Based on SEDA, our design will
make use of the global control strategy to balance
loading in the staged network, exploit system
identification techniques to model the controlled
system at real-time, and utilize adaptive control
approach to implement fairness control on-the-fly.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

The structure of the paper is as follows. Section 2
discusses the related work and highlights how our
work differs from the existing literature. Section 3
presents the fairness control system design, including
global loading control framework, self-tune stage
with automatic modeling and fairness control
approaches. Section 4 shows the experimental results
of benchmarking our design, and Section 5 presents
our thoughts on future work and conclusions.

2. Related Work

In this section, we discuss some related work on

web server performance control, especially the fair
service control as classified as below.

2.1 Admission Control on Queuing

The degree of fairness is generally determined by
the queue lengths [1]. By controlling the queue length
or the arrival rate, the response time of each accepted
request can be guaranteed. Admission control
approaches that are currently exploited in fairness
control on software systems usually make use of
round robin scheduler, or use a threshold to decide
the acceptance or rejection of a request to avoid
overloading. Chen et al. [4] proposed a dynamic
weighted fair sharing scheduler to control session-
based overload in web servers. The weights are
adjusted to maximize the throughput objective
function, partially based on session transition
probabilities from one state to another, avoiding the
requests overwhelming the state capacity. Similarly,
Carlstrom et al. [3] used heuristic control approach
on generalized processor sharing for scheduling
requests. Based on empirical parameter configuration,
Urgaonkar et al. [16] made use of batch processing
and scalable threshold policing to handle overloads in
web application servers at runtime, and demonstrated
that this approach can perform well under estimated
loading environments. Based on SEDA, Welsh et al.
[14] presented a multi-stage approach to overload
control based on adaptive per stage admission control.
In this approach, the controller observes the staged
service time and tunes request rate on each stage to
attempt to meet the stage’s percentile response time
target.

2.2 Classical Feedback Control

Using classical feedback control theory is another

approach to controlling the performance for web

servers. Adbelzar et al. [1] adjusted control
parameters based on various QoS management
measures, including resource utilization, resource
sharing, system loading etc. In [5], Diao et al.
presented an auto-tune agent for CPU and memory
utilization control by combination of automatic
system modeling mechanism and LQR feedback
control. Similarly, Zhou in [17] made use of the PID
(proportional-integral-derivative) on queuing control,
but the PID parameters configuration is based on
empirical guess. Compared with other fixed policy
control approaches, control theoretic approaches
demonstrate advantages in their flexibility, stability,
accuracy and rate of convergence. This approach is
easy to use in practice, especially for software
systems that need fast reaction with good robustness.
However, a classic feedback control system needs the
mathematical model of the target system. If the
configuration of the control parameters depends on
the administrator’s experiences, the control quality is
unreliable and non-guaranteed.

3. Fairness Control on Web Servers

As demonstrated in [14], staged event-driven
architecture (SEDA) is a sound way to support highly
concurrent systems. However, SEDA does not
guarantee the fairness for such systems, e.g. web
servers, where the client load is highly concurrent
and dynamic. In this paper, we present an innovative
system that explicitly manages the fairness for busy
web applications with quality and quantity
guaranteed.

The purpose of the fair service is to let requests

equally have the expected quality of service. The
distribution of the response time is an important
metric to evaluate the degree of fairness. In general,
the percentile response time is determined by the
queue lengths, which are related to the arrival rate of
the requests and the dispatch rate of the responses. A
large number of studies, like the work introduced
above, usually focused on using the arrival rate to
control the response time. In fact, as an alternative
way, resource management with respect to the
dispatch rate regulation is also feasible for fairness
control. In this section, we will firstly present a
control approach for the throughput of the whole
system, and then show how to map the percentile
response time to the target throughput. Finally a
control strategy for explicit fairness control by
dispatch rate regulation is proposed.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

3.1 Staged Event-Driven Architecture (SEDA)

SEDA partitions a complex business logic into a
set of simple basic tasks in order. Each task is
processed by a sequence of stages separated by event
queues. Since SEDA uses non-blocking input/output
(I/O) for its event-driven designs it is effectively able
to provide quality-guaranteed fairness control for
high-concurrent loads with less resources and
contention [14]. The explicit event queues between
SEDA stages act as a mechanism for controlling the
flow of requests in the whole system. Under the
SEDA architecture, each stage is isolated from others
and is responsible only for processing a subset of
requests to avoid holding resources by single request
and associated thread for too long. In terms of the
decoupled design and the disadvantages of the
original empirical control system, in [7] we presented
an innovative automatic control framework for such
multiple event queue system to self optimize the
system resources and performances on-line.

3.2 Automatic Control Framework on SEDA

The service rate (throughput) of the SEDA-based

system is one factor that determines the latency of
server requests. Queue capacity is another factor. In
SEDA, loading balancing in the staged pipeline is
important for the whole system performance. To
meet this goal, an automatic control framework on
SEDA is developed as a combination of global
loading balance control system and self-tune stages.
The purpose of the global control framework is to
manage the overall throughput of the whole staged
network at the top-level, which includes coordinating
the performance of all stages in the network and
balancing the loadings in the staged pipeline, as
illustrated in Figure 1

Figure 1: An Overview of the Global Control System

In this figure the broad arrows lying between the

stages represent the processing path of the event
requests, and the thin arrow curves represent the
reference signal setup by global control mechanism
and the feedback loop of the control system.

^

Ar ,
^

Br ,
^

Cr ,
^

Dr are the performance targets of the stage,
configured by the global control system [7].

Under the control framework, each self-controlled

stage is built on the thread pool model, and will
adjust its performance locally in order to meet the
overall target performance. In [7] we presented a
configuration law for the global workload balancing
under this control framework and demonstrated that
using proportional control based pre-compensator
control system is able to achieve the control target
with a fast convergent speed.

3.3 Automatic Control System on Stage

Each stage consists of a thread pool modular and
an auto-modeling based feedback control system, as
illustrated in Figure 2. In each stage, the thread pool
model is the controlled target, the same as the
original SEDA design. The purpose of the auto
modeling mechanism is to automatically depict the
flow in the stage and to optimize the controlled
parameter configurations at runtime. Working
together with auto-modeling, the feedback control
system auto tunes the manipulated parameters to the
best values by using automatic control theories,
thereby guaranteeing the quality of performance.

Figure 2: Self-Tune Stage

We reuse the proportional-control based pre-
compensator control strategy [7] to implement the
feedback control mechanism. This controller
approach is validated by the results from a simulation
study using Matlab [8] and a real-life implementation

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

of a SEDA-based web server. The results are shown
in Figure 3.

Figure 3: Performance of the Control System in Simulation and

Practice

As Figure 3 shows, the simulation output closely
matches the reference, which means our design is
able to effectively control the system performance at
runtime, with an adequate convergence rate and a
very small steady-state error.

Figure 4 shown below is the result of the

comparison between the heuristic control used in the
original SEDA and the Proportional control strategy
used in the current design.

Figure 4: Comparison of the Feedback Control and Heuristic

Control

The comparison results demonstrate that the
performance of our control can provide a faster
reaction speed, higher stability and better accuracy.
The oscillations that appear in the experimental
process are most probably due to the Java Virtual
Machine (JVM) garbage collection [13].

In general, classical feedback control is not widely

deployed in software systems because of the
difficulties of manual system modeling. Combining
the auto-modeling mechanism with the control
system reduces the manual work in configuration
management, and guarantees the values chosen for
the controlled parameters are optimal and reliable.

3.4 Fairness Control

Fairness in web applications is a performance

metric presented as a percentage of the requests that
can get the equal quality of service. In order to
guarantee the majority of requests can get the desired
response time, the 90th percentile response time is
chosen as the controlled target in the current research.

Based on Little’s law [9], average response time

can be mapped to the average number of clients via
throughput as Equation (1) shows.

where N , T and R represent the average number of
clients, the mean response time and the throughput
respectively. Little’s law implies that the average
response time can be controlled by throughput. If the
desired percentile response time can be mapped to
the mean response time, the control approaches used
in the throughput can be reused in the current design
for fairness management.

Although the percentile response time does not

have direct relationship to the mean response time in
terms of the uncertainties of the distribution,
however, regardless of the difference of the
distribution, in arbitrary sample interval, the value of
the percentile response time can be regarded as
proportional related to the mean response time. In
terms of this relationship, Equation (2) and Equation
(3) are developed to estimate the desired average
response time used in each sample period,

~
(1) (1) (1)estimate desiredR k k R kα+ = + +

(2)

~

()(1) () (1)
()percentage

R kk W k W
R k

α α+ = + −

(3)

where
~

estimateR and desiredR respectively represent the
target of the average response time obtained from
estimation and the target of the percentile response
time. α is a dynamic scale used to convert the target
of the percentile response time to the estimated mean
response time. Equation (2) converts the reference of
the percentile response time to the desired average
response time via scale α . Equation (3) is developed
to update the α in each sample interval. At the
sample interval of 1k + , α is estimated by the most

.N R T= (1)

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

recent mean response time (
~

()R k) and the percentile
response time (()percentageR k) with a weightW . Our
experiment results show that, despite uncertainties of
the distribution, using Equation (2) and Equation (3)
is sufficient to smoothly map the percentile
performance metrics to the average performance
metrics with considerable accuracy at the runtime.

When system is running with a constant number of

requests at any time, the clients number at time
1k + can be estimated by the last mean response time

(
~

()R k) and throughput (()T k), as Equation (4)
shows.

^ ~
(1) (). ()N k R k T k+ =

(4)

where
^

(1)N k + is the estimated average number of
clients at the interval of 1k + in the system.

Despite some difference between the actual
number of clients in the next and current sample
interval, the difference can be regarded as small
enough to be neglected in a system dealing with
stable loadings. Using these parameters, the desired
system throughput in 1k + can be obtained by
Equation (5)

^
(1)(1)

(1). (1)throughput
desired

N kRef k
R k kα

++ =
+ +

(5)

Equation (5) maps the desired percentile response
time to throughput. It means that when the average
number of requests staying in the system is constant,
and if the system can perform with the desired
service rate, the system will ensure the fairness of
service to meet the performance target. These
operations are implemented with the global control
mechanism. In each sample interval, the global
control framework automatically adjusts the desired
throughput obtained from Equation (5) on each stage.
Each auto-tune stage then will use the feedback
control system to convert its departure rate to this
target.

Because it is a feedback control system, its

response will lag changes in the workload. To
address this issue, when a large number of requests
are added onto the server in a small interval, the
highest request rate in the recent history record will

be used as the desired throughput of the stage’s own
performance target. This allows an increase in the
convergence rate and guarantees there are sufficient
resources allocated in the stage to support the
increasing loading, so as to maintain a satisfactory
performance. When the loading in the system
becomes stable again, the global loading control
mechanism will reuse Equation (2) and (3) to
calculate the estimated throughput. In one sense,
using a stage request rate as the desired throughput
can be regarded as a special case where the service
rate equals the request rate and the estimated mean
response time obtained from the desired percentile
response time is identical to the latest average
response time.

4. Implementations and Experimental
Results

In this section, we demonstrate the experimental

results of putting the above theoretical designs into a
SEDA based web server [15] to validate and evaluate
the performance in practice. The testbed consists of
one server machine (2.8 GHz Pentium 4 systems with
1.5 GB of RAM) and a client machine (2.0 GHz
Pentium 4 systems with 512MB of RAM). The
SEDA web server is developed with SUN JDK 1.5
running on Linux kernel v2.6.

To imitate a dynamic loading environment that is

as realistic as possible, a “partly-open loop”
benchmark [2] is developed to evaluate our designs.
Most of the benchmarks currently in use are grouped
into two catalogues. One is the “open loop”
benchmarks such as httperf [6]. The benchmarks in
this group send requests at a fixed rate periodically
(the time of the period is also named as thinking
time). The performance of this benchmark strongly
depends on the configuration of the thinking time.
However, the optimal configuration for this
parameter is not only a matter of the benchmark
itself, but is also affected by the server. In general, it
is not easy to obtain a good value for the benchmark
settings. Another type of the benchmark is “closed
loop” model. “Clients” in this kind of benchmark will
only send new request until the response of the last
request has come back, like TPC-C [12] etc.
Benchmarks of this type can provide constant
workload on the server side. However, a pitfall of this
kind of benchmark is that it cannot continue putting
pressure on the server. Although it also can be used
to emulate a dynamic loading environment, however,

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

a couple of such benchmarks are needed to run
alternatively during the experiment, which may
consume a great deal of resources. In terms of the
failures of the “open loop benchmark” and the
“closed loop benchmark”, “partly open loop”
benchmark is proposed in [2], which is aimed to
provide a more realistic dynamic loading
environment by making use of a small number of the
clients. The “partly open loop” system here is
developed based on the SPEC 99 [11]. Whenever the
response of the most recent request is not received
before the expected time, the client will send a new
request to the server. The “Partly open loop”
benchmark simulates a more dynamic environment
and keeps putting heavier load on the server with less
resource consumption. The “Partly open loop” model
has the advantages that it can not only guarantee a
constant loading on the server, like “closed loop”
model; but also behaves like “open loop” benchmark
that keeps sending new requests, which enables a
server to experience a more realistic loading test than
conventional benchmarks.

To demonstrate our designs, we make use of the

design to implement fairness control on web servers,
in which the 90th percentile response time is chosen
as our performance metrics and control target. This
test includes two experiments. In one we have control
over the 90th percentile response time in order to
meet the changed dynamic target at runtime; in the
second the 90th percentile response time is kept
stable at the desired target when the workload is
arbitrarily changed.

4.1 Trace the Dynamic 90th Percentile

Response Time Target

The purpose of this experiment is to test the

feasibility of the control mechanism when it is
needed to control the 90th percentile response time in
response to the change of the desired target at
runtime. The “partly-open loop” workload generator
simulates 250 clients to request the same service
from the server. If the response of the last request
does not come back within the expected time
(1500ms here), a new request is sent to the server.
The experimental result is shown in Figure 5.

0

200

400

600

800

1000

1200

1400

1600

1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460
RunTime in Seconds

90
th

 P
er

ce
nt

ile
 R

es
po

ns
e

Ti
m

e
(m

s)

Actual Performance Reference

Figure 5 Adjust the 90th Response Time on-the-fly

As Figure 5 shows, whenever the performance

target is changed, server adjusts the resources to
follow the reference, and maintain most of the
response time remaining under the target. It can be
seen from the results that our approach provides a
fast convergent process with high accuracy. Note that
the control performance may be unsteady at times in
terms of the instability of the network and the jitter of
the request arrival rates, as well as the memory
management used in JVM. In addition, when the
control target is close to the “expected response time”
of the benchmark, performance will be unstable for
large variation in the request rate.

4.2 Maintain stable 90th percentile response

Time

This experiment tests the performance of our
design keeping constant percentile response time
during unpredictable dynamic loading environment.
In the experiment, four groups of clients are
randomly added onto the server at different time,
whose sizes are 100, 150, 100, and 50 respectively,
and each client is independent on others (as Figure 7
shown). The 90th percentile response time is expected
to be less than 1000ms (with 10% variance
permitted). By using the above algorithm and control
approaches, the performance of the system is
illustrated in Figure 6. The experimental results
demonstrate that even under unpredictable dynamic
loading environment our mechanism is able to
maintain fair service to a majority of the incoming
requests.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

0

500

1000

1500

2000

2500

3000

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Runtime in Seconds

90
th

 P
er

ce
nt

ile
 R

es
po

ns
e

Ti
m

e
(m

s)

Figure 6 Maintaining Constant 90th Percentile Response Time

0

50

100

150

200

250

300

350

400

450

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Runtime in Seconds

N
um

be
r o

f C
lie

nt
s

Figure 7 Dynamic Workload Placed on the Web Server

As can be seen from the results, instead of using

the arrival rate control at the source, departure rate
control is an alternative approach to implementing
the fair service effectively for the dynamic loadings.
Some unexpected spikes in the process are recorded
for two reasons. The first is the variation of the
request rate. In general, there is a delay in the
system’s reaction to the change in the working
environment, and thus the system is late at adjusting
the thread pool size to the correct value. Once the
active number of threads is insufficient to support the
requests, response time will sharply increase. Hence
when a large number of new clients are added to the
server, the system will take some time to settle down
these new requests, similar to the performance during
the interval between the 14th and 32nd seconds.
Reaction delay indeed is a failure of all feedback
control systems. Another reason is the periodic
garbage collection in JVM, like the spike that appears
at the time spot of 50th. Whenever JVM is running
the garbage collection, the accepted requests are
suspended, thereby accumulating a large number of
requests queuing for service. The service time thus
sharply increases.

This experiment also reveals the relationship of the
response time, arrival rate and the dispatch rate.

Figure 8 illustrates the difference of the arrival rate
and dispatch rate at real-time. Referring to the
response time shown in Figure 6, the experimental
results demonstrate a fact that the response time is
not directly determined by the number of requests
accepted by the system or the service rate, but is
resulted from the difference of the arrival rate and the
dispatch rate. In one sense, this difference can be
regarded as the total queue-fill-level in the system
from the end to the front. This relationship implies
that the response time should be controlled by
minimizing the difference between the service rate
and the arrival rate, rather than only focus on the
system capacity or arrival rate.

Figure 8 the Difference of the Arrival Rate and Dispatch Rate

(positive value means Arrival Rate is greater than Dispatch Rate)

Figure 9 shows the distribution of the response
time in this experiment. It can bee see that 90%
percentile of the response time can be controlled at
the points less than 1160 ms, almost meeting our
control target.

Figure 9 Distribution of the Response Time

The above experimental results definitely

demonstrate that our design is able to provide explicit
quantitative control on fairness for high concurrency.
Even when the system runs under dynamic loading
environment with uncertainties, our design is still
able to effectively control the performance to meet
the target and shows good robustness.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

4.3 Comparison with the Original SEDA

In this evaluation, our design is implemented into a
SEDA-based web server to compare with the original
SEDA web server [15] that uses the admission
controllers with round robins [14]. Both servers are
required to provide the response time at less than
100ms to 90% of the total requests. The configuration
of the parameters in the original SEDA is optimized
by our long-time tests and experiences. On the client
side, we make use of a set of the “open loop” request
generators. Each generator emulates 100 independent
clients, and every client will randomly dispatch a new
request every 200~600ms. In order to build a
dynamic loading environment, three groups of clients
(each group has 100 clients) are added onto the server
every 120 seconds during the runtime.

First of all, we compare the distribution of the

response time of two servers. The results are shown
as Figure 10 and Table 1.

0

5000

10000

15000

20000

0 10 20 30 40 50 60 70 80 90
Response Time (ms)

N
um

be
r o

f P
ac

ke
ts

Original SEDA
Auto Fariness Control

Figure 10 the Distribution of the Response Time

Table 1 the Comparison of the Fairness Performance

Total

Requests
(packets)

Accepted
Requests
(packets)

Rejected
Requests
(packets)

Requests
< 100ms
(packets)

Original
SEDA 234676 149491 85185 143362

 Auto-
Fairness
Control

240133 240133 0 176606

The above results show the comparisons in the

following aspects. Firstly, it shows the comparison on
the percentage of the requests that can get the
demanded response time. It can be seen from table 1
that, nearly 95.9% of the processed requests in the
original SEDA can achieve the quality of service,
whereas, just 73.54% meet the target in our design.
Secondly, in the original SEDA, the percentage of the
rejected requests reaches 36.3%, but in our

mechanism the rejected rate is 0. These data indicates
that, among all the client requests sent to the servers,
the percentages of the requests that can get the
expected response time are respectively 61.8% and
73.54% in the original SEDA and in our mechanism.
Moreover, as figure 10 shows, the requests serviced
by our design have an overall faster service time than
the original SEDA. As a result, we argue that our
approach can provide a fairer service than the
original SEDA.

Secondly, we compare the throughput of two

servers. The experimental results are shown in
following figures.

0
200

400
600

800
1000

1200
1400

1600
1800

2000

0 100 200 300

Runtime in Seconds
Th

ro
ug

hp
ut

 (r
eq

/s
ec

)

 Figure 11 the Throughput of the Automatic Fairness Control

0

300

600

900

0 100 200 300

Runtime in Seconds

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Figure 12 the Throughput of the Original SEDA under Admission

Control

0
50

100
150
200
250
300
350

0 100 200 300
Runtime in Seconds

N
um

be
r o

f C
lie

nt
s

Figure 13 the Loadings at Runtime

As the experimental results show, with the number

of the requests increase, our automatic fairness
control mechanism is able to optimize resources to
maintain a stable throughput. In contrast, under high
concurrency, the original SEDA will make use of the
admission control mechanism to reject the incoming
requests, thereby degrading the throughput. This
comparison demonstrates that our design performs

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

more robustly than the original SEDA, and is able to
guarantee the quality of the performance under
unpredictable dynamic loadings.

Thirdly, as a staged network, stages are expected

to perform in accord. Figure 16 and Figure 17 exhibit
the comparison of the performances of the stages in
the auto-tune control framework and in the original
SEDA.

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Runtime is Seconds

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Socket Stage Parse packet Stage

Get File Stage Send Response Stage

Figure 14 the Performance of the Stages under the Automatic

Fairness Control Strategy

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Runtime in Seconds

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Socket Stage

Parse packet Stage
Get File Stage

Send Response Stage

Figure 15 the Performance of the Stages in the Original SEDA

With the use of the global control framework, our

auto-control system is able to balance the workload
across the staged network. In contrast, under the
same loading, the stages in the original SEDA
perform with unequal service rates, resulting in a
significant degradation of the overall performance.
Therefore, our design avoids the problem that the
resource is consumed by rejected requests.

Finally, our design employs the automatic control

theories which implement the fairness management.
Using this approach, system administrators are only
needed to configure the performance target on the
system. However, in terms of the fixed policy control
strategy, the original SEDA is required to optimize
the number of tokens and the thread pool size for

each stage. This manual configuration is very time-
consuming and non-quality guaranteed. In particular,
when the system is running under the dynamic
loading environment with uncertainties, the
automatic fairness control mechanism is able to
maintain a stable performance, meeting the
performance target. But the performance of the
original SEDA usually is degraded a lot in terms of
the fixed configurations.

5. Conclusions and Future Work

This paper presented an innovative approach for
explicit fairness control on web applications. Based
on SEDA, the design developed here consists of a
global control framework for loading balance in
multi-queue the event-driven systems and the
automatic modeling based high-level adaptive control
stages. Both theoretical analysis and experimental
results demonstrated that, by using resources
optimization, our approach is effective on fairness
control for web servers with superior performance
even under unpredictable dynamic loading
environment. Compared with heuristic control, this
control strategy is able to provide fast convergence,
high accuracy and reliable services. Instead of
applying complicated control theory and algorithms,
our work also showed that Proportional control based
pre-compensation model is good enough for
multiple-stage software systems performance control.
This makes it feasible to build our approach into
SEDA middleware and apply it for a large range of
applications

Compared with the fairness of service provided by
the original SEDA, our design provides a fairer and
more robust service for high concurrency with no
rejected requests. As a result, this work significantly
improves the original SEDA in terms of service
fairness and robustness.

From here, two areas of future work are particular
interesting. The first is to extend our design to
support differentiated services. Our current design
only focuses on providing quality-guaranteed service
fairness to all requests on the same service level, but
is not developed for differential classes. The other is
to apply our design and the approach in the large
scale distributed systems.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

6. Reference

[1] T.F Abdelzaher, J. A Stankovic, et al.:
Feedback performance control in software
services. Proc IEEE control systems
magazine (2003)

[2] S. Bianca, et al.: Closed versus open system
models and their impact on performance and
scheduling. (2005)

[3] J. Carlstrom and R Rom, Application-aware
admission control and scheduling in web
servers. In IEEE Infocom 2002.

[4] H. Chen and P. Mohapatra: Session-based
overload control in QoS-aware Webservers.
Proc. of IEEE INFOCOM2002, pages 516-
524. (2002)

[5] Y. Diao, J.L Hellerstein., et al.: Managing
web server performance with autotune
agents. IBM System journal Vol 42, No 1,
pages 136-149. (2003)

[6] Httperf_http://www.hpl.hp.com/research/lin
ux/ httperf/docs.php

[7] Z. Li, D. Levy, S. Chen, et al.: “Auto-Tune
Design and Evaluation on Staged Event-
Driven Architecture” proc of MODDM '06
Melbourne (2006)

[8] Matlab http://www.mathworks.com/
[9] D.A. Menasce and F.Almeida., Capacity

Planning for Web Services Metrics, Models,
and Methods, Prentice Hall PTR Upper
Saddle River, N.J.07458, ISBN: 0-13-
065903-7. (2002)

[10] G Pacifici., W Segmuller., et al.: Managing
the response time for multi-tiered web
applications, IBM, Tech. Rep. RC 23651,
2005.

[11] SPECweb99 Benchmark,
http://www.spec.org/web99/

[12] TPC-C: http://www.tpc.org/tpcw/
[13] Tuning Garbage Collection with the 1.4.2

Java[tm] Virtual Machine.
http://java.sun.com/docs/hotspot/gc1.4.2/

[14] M. Welsh and D. Culler: Adaptive Overload
Control for Busy Internet Servers. Proc. of
the Fifth USENIX Symposium on Internet
Technologies and Systems (2003)

[15] M. Welsh, D. Culler, et al.: SEDA:An
architecture for well-conditioned scalable
internet services. Proc. of the 18th ACM
Symposium on Operating Systems
Principles, anff, Canada. (2001)

[16] B. Urgaonkar, P. Shenoy. Cataclysm:

Handling Extreme Overloads in Internet
Applications. Proceedings of the Fourteenth
International World Wide Web Conference
(WWW 2005). pp. 740-749. Chiba,
Japan.(May 2005.)

[17] X. Zhou, J Cai,, et al: Robust Application-
level Approach for Responsiveness
Differentiation Proc. of the 3rd International
Conference on Web Services (ICWS), IEEE
Computer Society, Pages 373 - 380, Orlando,
(July 2005).

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

